A comparative reading of academic discourses (I)

Dr. Silvia-Adriana Tomescu
“Carol I” Central University Library of Bucharest
E-mail: silviatomescu@yahoo.co.uk

Dr. Silvia-Adriana Tomescu is librarian at “Carol I” Central University Library of Bucharest, Political Science Library. She completed the doctoral studies in Information Science with a dissertation on distance learning in higher education: „The use of modern means of communication as teaching, learning and training in distance higher education. Case study: librarians' raining.” Her main study fields of research are: eLearning librarianship, higher education, academic writing and related to current position cultural diplomacy and the Romanian exile. She published translations and studies in library science and communication.

Abstract
The academic discourse as specific and specialized language, occurs in a formal space. We intend to illustrate that it is distinctive not only through a specific syntax but also through a specific semantic, which imposes norms of sense supposed to legitimate a kind of knowledge. Its main characteristic is the use of concepts of a certain generality as synthesis and integrity of the expression. Another characteristic which we intend to underline through comparative reading is the inter and trans disciplinary dimension which both legitimate an authentic academic discourse. In this regard, new problems about the pertinent and coherent delivery and understanding of academic discourse rise. As showed in its etymology, academia is the place where the various scientific communities meet and research, it is a place of conventionalism, marked by a specific language and style and that is the perspective that our comparative reading aims to underline.

Keywords: comparative reading, academic discourse, academic context

The academic discourse has as specific purpose - to persuade; it operates through specific concepts and aims at understanding and applicability to social life. We intend to analyze the academic discourse as: (a) didactic speech, transmission of knowledge; (b) Inaugural speech; (c) reception speech in Academia.
I. The didactic speech

The didactic speech as academic discourse emphasizes explanation and more than this, socialization. Teaching humanities involves a special form of socialization: teacher-student. It is a type of mutual influence that stimulate the development. It has specific values for each sphere of action. It is a form of enculturation. The audience is comprised by students, teachers, academicians, researches and influences the structure of narration.

In science teaching, students follow different purposes, comparing to teachers. While students have as main goal to gain the best results, the teachers try to show the path, the method, the way, which has to be followed to get the best results.

The problem-solving method requires explanation of the method, to prove, with certain codes, the choice of the logic operation. Explaining, the student disambiguates, to network values, numbers, quantities. “Multiply the first equation with “a” and the second with “b”, and then subtract them one by one. It will get…” We may observe that each statement has a consequence. Following explanations students become aware of how to work with theories and methods, and are able to relate to the surrounding reality [we are talking about metalearning]. In mathematics teaching we often meet problems such as: „Intervals are sets of real numbers, so operations with intervals are operations with sets: intersection, difference. Find a, and b, € R, where a …” We have in the problem above such a good example of causal inference. The task here is expressed by imperative verbs: show that, show the truth value, argue that, calculate, establish etc.

The solution may have the following form: If we represent the intervals on the axis, it follows that or, according toit follows that. This expression offers us a direct result and shows the ability to apply mathematical problems, and that the math language is a common code for the students, shows their capacity to understand what is asked, an evolution, a progress, a thinking modeling process, reflects that the conditions for a new thinking style are created.

The solution is in an intermediate stage because math exercises are ending conventionally, whatever the inferential process would be. Questions like "how did you do this?" allow logical reasoning of the approach whiles the question "why?" or tasks such as “be more explicit” involve the argumentation. Obviously, such strategies are facing barriers and difficulties of speech or of logic. Student’ errors can be adjusted only when teachers can understand the principles that guide their thinking. The systems of signs a science operates with should be treated at pragmatic level. (1)

Solomon Marcus believes that mathematical language includes: (a) natural language (b) elements of natural language, used as artificial symbols, (c) symbols (d) expressions, relations, formulas, equations (e) pictorial representations..etc. (2)

The sphere of engagement and interaction in didactic discourse is composed by fundamentals with pedagogical value. The schools and the classroom compose the small universe of informational exchange. Between teacher and student, there is a gap of knowledge which imposes an adapted language. Mathematics is a logical interaction, more than an act of formulas memorizing. Also we must say that, the ideal feedback is achieved only when there is a common language between teacher and student, when shared values, norms and concepts are understood. The academic discourse in its progress
is marked by the prefix “meta” as mark of content – [meta message], and mark of process [meta-learning]. Explaining the contents, the teacher communicates the message, giving details about the approach the students are desirable to adopt, and how to analyze the content.

II. The reception speech

In the reception speech held in The Romanian Academy Professor Solomon Marcus addressed to an audience with similar backgrounds, who shared similar norms, values, and a common universe, "a mathematician’s reception speech address not only to its colleagues but also to the academic community. I do not hide the fact that I was tempted to invite a colleague from another department to give me the answer, but the wish to speak to someone who is witness of my spiritual itinerary and whose creative work has a remarkable asset, largely interdisciplinary..... We speak in this case about a symmetric discourse. (3)

The speaker proposes an integrator discourse, because otherwise the locator is damned to loneliness, as the mathematician is: “because the language is the loneliness of the mathematician, so worth it pays special attention...” (4) Math teaching is a constructivist approach, a structure of new meanings, logically linked to prior knowledge, and its final meaning is given by the students' behavior after discovered and understanding the new knowledge.

The discourse of Professor Marcus is about the interdisciplinary understanding of mathematics; it was addressed more at the syntactic and less semantic level: “Wonderful times! But we are now in a time in which, from totally other reasons that explain the situation that had been a hundred years ago, the dialogue of the disciplines is a major necessity.” (5) This "dialog of the discipline" that professor Marcus is referring to, must be regarded as a transdisciplinary approach of the didactic process – beyond discipline. (6)

We learn algorithms and not their applicability in life. Any mathematical operation has a practical application. Most of the math teachers do not teach their utility for everyday life. How and What Involves?

We assume Prof. Marcus conclusion that shows how to treat math science "you don’t find the true mathematics in textbooks; the real mathematics, that which introduces you in the work lab of the mathematician, is present in the research journals"(7). There is an arrogant discourse of math teachers nowadays which breaks any "quid pro quo" or possible question of the students at discursive level. At semantic level, we are not able to tell why is useful to learn formulas and algorithms and we do not know its applicability in the social life. We deal with an elitist style of math teaching and of its abstract understanding.

The act of teaching develops a type of discourse, which argues its expressed values, relations and the manner in which they can be achieved. In such a supportive approach the teacher's role is crucial. Each participant in the discourse comes with its own corpus of concepts, ideas, values, knowledge; each displays a specific identity in the moments of interaction.
References

(3) Ibidem.

(4) Ibidem.

(5) Ibidem.
